1,314 research outputs found

    Dynamics of horizontal-like maps in higher dimension

    Get PDF
    We study the regularity of the Green currents and of the equilibrium measure associated to a horizontal-like map in C^k, under a natural assumption on the dynamical degrees. We estimate the speed of convergence towards the Green currents, the decay of correlations for the equilibrium measure and the Lyapounov exponents. We show in particular that the equilibrium measure is hyperbolic. We also show that the Green currents are the unique invariant vertical and horizontal positive closed currents. The results apply, in particular, to Henon-like maps, to regular polynomial automorphisms of C^k and to their small pertubations.Comment: Dedicated to Professor Gennadi Henkin on the occasion of his 65th birthday, 37 pages, to appear in Advances in Mat

    Network-Aided Intelligent Traffic Steering in 6G O-RAN: A Multi-Layer Optimization Framework

    Full text link
    To enable an intelligent, programmable and multi-vendor radio access network (RAN) for 6G networks, considerable efforts have been made in standardization and development of open RAN (O-RAN). So far, however, the applicability of O-RAN in controlling and optimizing RAN functions has not been widely investigated. In this paper, we jointly optimize the flow-split distribution, congestion control and scheduling (JFCS) to enable an intelligent traffic steering application in O-RAN. Combining tools from network utility maximization and stochastic optimization, we introduce a multi-layer optimization framework that provides fast convergence, long-term utility-optimality and significant delay reduction compared to the state-of-the-art and baseline RAN approaches. Our main contributions are three-fold: i) we propose the novel JFCS framework to efficiently and adaptively direct traffic to appropriate radio units; ii) we develop low-complexity algorithms based on the reinforcement learning, inner approximation and bisection search methods to effectively solve the JFCS problem in different time scales; and iii) the rigorous theoretical performance results are analyzed to show that there exists a scaling factor to improve the tradeoff between delay and utility-optimization. Collectively, the insights in this work will open the door towards fully automated networks with enhanced control and flexibility. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms in terms of the convergence rate, long-term utility-optimality and delay reduction.Comment: 15 pages, 10 figures. A short version will be submitted to IEEE GLOBECOM 202

    Suppression of Intensity Fluctuations in Free Space High-Speed Optical Communication Based on Spectral Encoding of a Partially Coherent Beam

    Get PDF
    A new concept of a free-space, high-speed (Gbps) optical communication system based on spectral encoding of radiation from a broadband pulsed laser is developed. It is shown that, in combination with the use of partially coherent laser beams and a relatively slow photosensor, scintillations can be suppressed by orders of magnitude for distances of more than 10 km. We also consider the spectral encoding of radiation from a LED as a gigabit rate solution of the "last mile" problem and rapid-deployment systems for disaster recovery.Comment: 16 pages, 2 figure

    Nano strain-amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects

    Get PDF
    This paper presents an innovative nano strain-amplifier employed to significantly enhance the sensitivity of piezoresistive strain sensors. Inspired from the dogbone structure, the nano strain-amplifier consists of a nano thin frame released from the substrate, where nanowires were formed at the centre of the frame. Analytical and numerical results indicated that a nano strain-amplifier significantly increases the strain induced into a free standing nanowire, resulting in a large change in their electrical conductance. The proposed structure was demonstrated in p-type cubic silicon carbide nanowires fabricated using a top down process. The experimental data showed that the nano strain-amplifier can enhance the sensitivity of SiC strain sensors at least 5.4 times larger than that of the conventional structures. This result indicates the potential of the proposed strain-amplifier for ultra-sensitive mechanical sensing applications.Comment: 4 pages, 5 figure

    Network-Aided Intelligent Traffic Steering in 6G O-RAN: A Multi-Layer Optimization Framework

    Get PDF
    peer reviewedTo enable an intelligent, programmable and multi-vendor radio access network (RAN) for 6G networks, considerable efforts have been made in standardization and development of open RAN (O-RAN). So far, however, the applicability of O-RAN in controlling and optimizing RAN functions has not been widely investigated. In this paper, we jointly optimize the flow-split distribution, congestion control and scheduling (JFCS) to enable an intelligent traffic steering application in O-RAN. Combining tools from network utility maximization and stochastic optimization, we introduce a multi-layer optimization framework that provides fast convergence, long-term utility-optimality and significant delay reduction compared to the state-of-the-art and baseline RAN approaches. Our main contributions are three-fold: i ) we propose the novel JFCS framework to efficiently and adaptively direct traffic to appropriate radio units; ii ) we develop low-complexity algorithms based on the reinforcement learning, inner approximation and bisection search methods to effectively solve the JFCS problem in different time scales; and iii ) the rigorous theoretical performance results are analyzed to show that there exists a scaling factor to improve the tradeoff between delay and utility-optimization. Collectively, the insights in this work will open the door towards fully automated networks with enhanced control and flexibility. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms in terms of the convergence rate, long-term utility-optimality and delay reduction

    The role of the family in HIV status disclosure among women in Vietnam: Familial dependence and independence

    Get PDF
    © 2018 Taylor & Francis Group, LLC. Insights into disclosure by people living with HIV and AIDS (PLWHA) can inform strategies for treatment and support, yet Vietnamese women's self-disclosure patterns are poorly understood. We conducted interviews with 12 HIV-positive women, identifying three principal factors influencing disclosure to family members: patrilocal residence, desire to protect own family, and the need for financial support. Women's decision-making about disclosure was significantly affected by dependence on or independence of parents-in-law and their own parents. We believe that our findings reveal the complex interplay of stigma and disclosure within Vietnamese families, highlighting the need for specific social measures that promote self-disclosure combined with family support for female PLWHA

    On the solutions of universal differential equation by noncommutative Picard-Vessiot theory

    Full text link
    Basing on Picard-Vessiot theory of noncommutative differential equations and algebraic combinatorics on noncommutative formal series with holomorphic coefficients, various recursive constructions of sequences of grouplike series converging to solutions of universal differential equation are proposed. Basing on monoidal factorizations, these constructions intensively use diagonal series and various pairs of bases in duality, in concatenation-shuffle bialgebra and in a Loday's generalized bialgebra. As applications, the unique solution, satisfying asymptotic conditions, of Knizhnik-Zamolodchikov equations is provided by d\'evissage
    corecore